Calibration of 90° Pulse Lengths

	PART I – INTRODUCTION
	1. Occasionally, some experiments will require more careful pulse length
	calibration.
	2. This handout will teach you how to calibrate the 90° pulse for ¹ H (or other
Do all of the usual	nuclei). It assumes basic familiarity with running a routine 1D NMR experiment.
set-up stuff	1) You will need to do the usual things: log on, insert your sample, create a
	new experiment, read in the parameters, lock, shim, tune, etc.
new	PART II – CALIBRATE ¹ H 90 ⁰ PULSE
new	1. Automatic 90° pulse Calibration
	1) Type new to set up a new experiment. Select the proton experiment from
	the panel on the right side of Topspin
rpar	or type rpar to read in the proton
	parameters.
	2) Execute the automatic 90° pulse
pulsecal	calculation by running the command
	values Take note of the bottom
	one your 90° pulse (us) and the
	power level (dB) (Fig 1) If pulsecal
	fails ("too many entries in peaklist").
	proceed to manual calibration.
	2. Quick Manual 90° Pulse Calibration
pulprog zg	1) Follow steps 1 and 2 of the Automatic Pulse Calibration procedure above.
	2) Set the pulse program pulprog to zg (should have been set as zg30
	before).
getprosol	3) Type getprosol to ensure that the most recently determined values for
	pulse times and power levels for all nuclei in the particular pulse program
	will be used.
rga	3) Type rga to start an automatic receiver gain set routine. When this is
	finished, the message rga:finished is output above the pink command line.
ns 1	Record the number that is set as rg .
ds U zg	4) Set ns 1 , ds 0 .
ef	5) Execute the experiment by running the command zg . After the experiment
abu,	multiplication and fourier transform) and ank (automatic phase correction)
change p1 to p1*4	6) Change p1 to a value that is four times the initial value, e.g., from $p1 = 10$.

	change to $p1 = 40$. You can do the math in the box by entering *4 after the
	current value. Rerun the experiment with zg .
	a. After the experiment is done, process the data with e fp. <u>Do NOT run</u>
	apk! If you do, you will need to restart from step 3!.
	b. Inspect the spectrum, then change p1 and acquire again until you get
	approximately a null signal (equal parts positive and negative).
	c. Make sure you wait at least 5 seconds between each acquisition to
	allow for sufficient relaxation.
	d. The null signal is your 360º pulse. Divide the p1 value corresponding
	to your null signal by 4 to get the 90° pulse. To save keystrokes, you
	can use the command zefp , which combines zg + efp and overwrites
	your data without asking.
	7) Make note of the p1 value for your 2D or other experiments.
or you can use	3. 90° Pulse Calibration with paropt
paropt	1) Alternatively, you can use the <i>paropt</i> command to calibrate your 90° pulse
	length. This will give you a
	full sinusoidal pulse
	calibration profile.
	2) Follow steps 1-4 of the
	Quick Manual Calibration
	step above
set p1 = p1/2	3) Set p1 to p1/2 (e.g., if p1
	= 14 after getprosol, set
zg: ef: apk	p1 = 7).
-3,, -p	4) Acquire a spectrum with
	zg , then ef; apk .
	5) Zoom in on the peak you with to calculate the 90° pulse for.
dpl1	6) Type dpl1 . This will set the left and right x-coordinates (F1/F2 or F1P/F2P) and
	the vertical scaling of the result.
paropt and follow the	7) Type paropt and enter p1, the first value, the increment, and the number
prompts	of measurements in the series. The first scan should be set to a few
	microseconds less than p1*4. Increments of a few microseconds is usually
	good enough.
Look for the null	8) Note: Each time paropt runs, you are left in procno 999. You can return to
point. That is your	the expno and procno from which you started by using the re command
360° pulse; the 90° is the p1 value	(i.e., if you started in expno 1 procno 1, type re 1 1).
corresponding to	9) Expand the vertical scale as necessary to judge the null point as the point
the null point divided by 4.	with symmetrically distributed residual signal. You can either use the

kill if you need to	 scaling buttons on the left or the equivalent command line commands to rescale the display while paropt is running. You'll have to mentally count the number of increments over to the target peak, so choose start values and increments that make the arithmetic easy. a. If you do not want to wait for the full array to run, you can kill the experiment. Type kill, and a window of all of the running processes will pop-up. Select <i>paropt</i> and hit the "Kill" button. Exit out of the pop-up window. 9) Consult one of the NMR staff or the Bruker manual if you have any further questions on paropt.
	PART III – CALIBRATE A 90 ⁰ PULSE FOR ANOTHER NUCLEUS
	 You can use any of the above methods to calibrate pulse lengths for other nuclei.
	2) However, if you do not have enough SNR to do a single scan, you must use labeled compounds for low abundance nuclei and signal average. This means you will need to change your d1 value appropriately to account for the T ₁ relaxation of your compound! Contact facility staff to setup pulse parameters for currently unused nuclei.