Calibration of 90° Pulse Lengths

\begin{tabular}{|c|c|}
\hline \multirow{2}{*}{Do all of the usual set-up stuff} \& \begin{tabular}{l}
PART I - INTRODUCTION \\
1. Occasionally, some experiments will require more careful pulse length calibration. \\
2. This handout will teach you how to calibrate the \(90^{\circ}\) pulse for \({ }^{1} \mathrm{H}\) (or other nuclei). It assumes basic familiarity with running a routine 1D NMR experiment.
\end{tabular} \\
\hline \& 1) You will need to do the usual things: log on, insert your sample, create a new experiment, read in the parameters, lock, shim, tune, etc. \\
\hline new \& \begin{tabular}{l}
PART II - CALIBRATE \({ }^{1} \mathrm{H} 90^{\circ}\) PULSE \\
1. Automatic \(90^{\circ}\) pulse Calibration
\end{tabular} \\
\hline rpar

pulsecal \& | 1) Type new to set up a new experiment. Select the proton experiment from the panel on the right side of Topspin or type rpar to read in the proton parameters. |
| :--- |
| 2) Execute the automatic 90° pulse calculation by running the command pulsecal. Pulsecal returns three values. Take note of the bottom one, your 90° pulse ($\mu \mathrm{s}$) and the power level (dB) (Fig 1.) If pulsecal fails ("too many entries in peaklist"), |
| Figure 1: Pulsecal output. Use the bottom value as your 90° pulse. |

\hline \multirow[b]{2}{*}{pulprog $\mathbf{7 g}$} \& 2. Quick Manual 90° Pulse Calibration

\hline \& | 1) Follow steps 1 and 2 of the Automatic Pulse Calibration procedure above. |
| :--- |
| 2) Set the pulse program pulprog to zg (should have been set as zg 30 before). |

\hline getprosol \& 3) Type getprosol to ensure that the most recently determined values for pulse times and power levels for all nuclei in the particular pulse program will be used.

\hline rga \& 3) Type rga to start an automatic receiver gain set routine. When this is finished, the message rga:finished is output above the pink command line. Record the number that is set as $\mathbf{r g}$.

\hline ds 0 \& 4) Set ns 1, ds 0 .

\hline zg
ef
apk \& 5) Execute the experiment by running the command $\mathbf{z g}$. After the experiment is done, process the data by running the commands ef (exponential multiplication and fourier transform) and apk (automatic phase correction).

\hline change p1 to $\mathrm{p} 1 * 4$ \& $6) \quad$ Change p1 to a value that is four times the initial value, e.g., from p1 = 10,

\hline
\end{tabular}

or you can use paropt	change to $\mathrm{p} 1=40$. You can do the math in the box by entering *4 after the current value. Rerun the experiment with $\mathbf{z g}$. a. After the experiment is done, process the data with efp. Do NOT run apk! If you do, you will need to restart from step 3!. b. Inspect the spectrum, then change $\mathbf{p 1}$ and acquire again until you get approximately a null signal (equal parts positive and negative). c. Make sure you wait at least 5 seconds between each acquisition to allow for sufficient relaxation. d. The null signal is your 360° pulse. Divide the $\mathbf{p} 1$ value corresponding to your null signal by 4 to get the 90° pulse. To save keystrokes, you can use the command zefp, which combines zg + efp and overwrites your data without asking. 7) Make note of the $\mathbf{p} 1$ value for your 2D or other experiments.
	3. 90° Pulse Calibration with paropt
	1) Alternatively, you can use the paropt command to calibrate your 90° pulse length. This will give you a full sinusoidal pulse calibration profile. 2) Follow steps 1-4 of the Quick Manual Calibration step above 3) Set p 1 to $\mathrm{p} 1 / 2$ (e.g., if p 1 = 14 after getprosol, set $\mathrm{p} 1=7$). Figure 2: Sinusoidal Pulse Calibration Profile
dpl1	4) Acquire a spectrum with $\mathbf{z g}$, then ef; apk. 5) Zoom in on the peak you with to calculate the 90° pulse for. 6) Type dpl1. This will set the left and right x-coordinates (F1/F2 or F1P/F2P) and the vertical scaling of the result.
paropt and follow the prompts	7) Type paropt and enter p1, the first value, the increment, and the number of measurements in the series. The first scan should be set to a few microseconds less than $\mathrm{p1*4}$. Increments of a few microseconds is usually good enough.
Look for the null point. That is your 360° pulse; the 90° is the $p 1$ value corresponding to the null point divided by 4.	8) Note: Each time paropt runs, you are left in procno 999. You can return to the expno and procno from which you started by using the re command (i.e., if you started in expno 1 procno 1 , type re 11). 9) Expand the vertical scale as necessary to judge the null point as the point with symmetrically distributed residual signal. You can either use the

